Sodium Meta-Arsenite Ameliorates Hyperglycemia in Obese Diabetic db/db Mice by Inhibition of Hepatic Gluconeogenesis
نویسندگان
چکیده
Sodium meta-arsenite (SA) is implicated in the regulation of hepatic gluconeogenesis-related genes in vitro; however, the effects in vivo have not been studied. We investigated whether SA has antidiabetic effects in a type 2 diabetic mouse model. Diabetic db/db mice were orally intubated with SA (10 mg kg(-1) body weight/day) for 8 weeks. We examined hemoglobin A1c (HbA1c), blood glucose levels, food intake, and body weight. We performed glucose, insulin, and pyruvate tolerance tests and analyzed glucose production and the expression of gluconeogenesis-related genes in hepatocytes. We analyzed energy metabolism using a comprehensive animal metabolic monitoring system. SA-treated diabetic db/db mice had reduced concentrations of HbA1c and blood glucose levels. Exogenous glucose was quickly cleared in glucose tolerance tests. The mRNA expressions of genes for gluconeogenesis-related enzymes, glucose 6-phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly reduced in the liver of SA-treated diabetic db/db mice. In primary hepatocytes, SA treatment decreased glucose production and the expression of G6Pase, PEPCK, and hepatocyte nuclear factor 4 alpha (HNF-4α) mRNA. Small heterodimer partner (SHP) mRNA expression was increased in hepatocytes dependent upon the SA concentration. The expression of Sirt1 mRNA and protein was reduced, and acetylated forkhead box protein O1 (FoxO1) was induced by SA treatment in hepatocytes. In addition, SA-treated diabetic db/db mice showed reduced energy expenditure. Oral intubation of SA ameliorates hyperglycemia in db/db mice by reducing hepatic gluconeogenesis through the decrease of Sirt1 expression and increase in acetylated FoxO1.
منابع مشابه
Eleutheroside E, An Active Component of Eleutherococcus senticosus, Ameliorates Insulin Resistance in Type 2 Diabetic db/db Mice
Eleutheroside E (EE), a principal component of Eleutherococcus senticosus (ES), has anti-inflammatory and protective effects in ischemia heart. However, it is unknown whether it ameliorates insulin resistance and reduces hyperglycemia in diabetes. This study investigated the effect of EE-containing ES extracts, as well as EE, on hyperglycemia and insulin resistance in db/db mice. EE increased t...
متن کاملInhibition of Aldose Reductase Activates Hepatic Peroxisome Proliferator-Activated Receptor-α and Ameliorates Hepatosteatosis in Diabetic db/db Mice
We previously demonstrated in streptozotocin-induced diabetic mice that deficiency or inhibition of aldose reductase (AR) caused significant dephosphorylation of hepatic transcriptional factor PPARα, leading to its activation and significant reductions in serum lipid levels. Herein, we report that inhibition of AR by zopolrestat or by a short-hairpin RNA (shRNA) against AR caused a significant ...
متن کاملFoxO6 Integrates Insulin Signaling With Gluconeogenesis in the Liver
OBJECTIVE Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. This effect stems from inept insulin suppression of hepatic gluconeogenesis. To understand the underlying mechanisms, we studied the ability of forkhead box O6 (FoxO6) to mediate insulin action on hepatic gluconeogenesis and its contribution to glucose metabolism. RESEARCH DESIGN AND METHODS We...
متن کاملInverse Agonist of Nuclear Receptor ERRγ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis
Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related...
متن کاملYin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor
Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014